PGP Exercise

We are going to be installing and using an implementation of PGP
called GNU Privacy Guard (GPG). There are other implementations we
can use. GPG can be a bit weird, but it works pretty well once
you're used to it.

1. Install GnuPG
On Debian, this is very simple:
apt—-get install gnupg haveged

To verify that you have it installed, you can type "gpg -h" to get
a list of options. There are a lot of options. We will use just a
few of them.

afnog@pc38:~$ gpg -h

gpg (GnuPG) 1.4.18

Copyright (C) 2014 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/
licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Home: ~/.gnupg

Supported algorithms:

Pubkey: RSA, RSA-E, RSA-S, ELG-E, DSA

Cipher: IDEA, 3DES, CAST5, BLOWFISH, AES, AES192, AES256, TWOFISH,
CAMELLIA128, CAMELLIA192, CAMELLIA256

Hash: MD5, SHA1, RIPEMD160, SHA256, SHA384, SHA512, SHA224

Compression: Uncompressed, ZIP, ZLIB, BZIP2

Syntax: gpg [options] [files]
Sign, check, encrypt or decrypt
Default operation depends on the input data

Commands:
-s, —-sign [file] make a signature
——clearsign [file] make a clear text signature
. and so on.

Once GnuPG is installed, you should do everything else NOT AS ROOT.
You should be typing commands as user "afnog".

If you see the "#" prompt, remember YOU SHOULD NOT BE ROOT. Change
to user "afnog".

Things might go weirdly wrong if you are root. Things will
definitely

become confusing if you switch between root and a regular user
("afnog"). Type everything as user "afnog".

I realise I just gave the same advice three times.
Don't be root.

Four times.

2. Create a new public/private key pair

Making sure that you are not root, use the gpg ——gen-key option to
create a new public/private key pair for user afnog (not root).

We can choose the default algorithms and key sizes. The key should
be identifiable as yours, so use your real name and e-mail address
(when it asks). Make the key expire in two days —- this is just a
key for playing in a workshop, and we don't want anybody to
accidentally think it is useful in the real world. Making it expire
helps with that. You can also add a comment to make it clear what
the key is for.

Generating a key pair requires the server to generate a random
number, and sometimes it can take a while for the system to harvest
randomness ("entropy") from paces like network interfaces. You might
have to wait a little while for this to finish.

GnuPG will ask you for a password that it will use to encrypt the
password when it stores it to disk. You should choose a password you
can remember.

afnog@pc38:~$ gpg ——gen-key

gpg (GnuPG) 1.4.18; Copyright (C) 2014 Free Software Foundation,
Inc.

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Please select what kind of key you want:
(1) RSA and RSA (default)
(2) DSA and Elgamal
(3) DSA (sign only)
(4) RSA (sign only)
Your selection? 1
RSA keys may be between 1024 and 4096 bits long.
What keysize do you want? (2048)
Requested keysize is 2048 bits
Please specify how long the key should be valid.

0 = key does not expire
<n> = key expires in n days
<n>w = key expires in n weeks
<n>m = key expires in n months
<n>y = key expires in n years

Key is valid for? (@) 2d

Key expires at Sun May 31 07:16:33 2015 UTC
Is this correct? (y/N) y

You need a user ID to identify your key; the software constructs
the user ID
from the Real Name, Comment and Email Address in this form:
"Heinrich Heine (Der Dichter) <heinrichh@duesseldorf.de>"

Real name: Joe Abley
Email address: jabley@nsrc.org
Comment: temporary for AfNOG 2015 workshop
You selected this USER-ID:
"Joe Abley (temporary for AfNOG 2015 workshop)
<jabley@nsrc.org>"

Change (N)ame, (C)omment, (E)mail or (0)kay/(Q)uit? o
You need a Passphrase to protect your secret key.

gpg: /home/afnog/.gnupg/trustdb.gpg: trustdb created
gpg: key DC2B8CI9F marked as ultimately trusted
public and secret key created and signed.

gpg: checking the trustdb

gpg: 3 marginal(s) needed, 1 complete(s) needed, PGP trust model

gpg: depth: @ valid: 1 signed: ®@ trust: 0-, 0q, On, Om, Of,
1u

gpg: next trustdb check due at 2015-05-31

pub 2048R/DC2B8CIOF 2015-05-29 [expires: 2015-05-31]

Key fingerprint = CB14 3326 B23F 1053 D094 BF16 B9FA 5B46

DC2B 8C9F

uid Joe Abley (temporary for AfNOG 2015 workshop)
<jabley@nsrc.org>

sub 2048R/5DDF749B 2015-05-29 [expires: 2015-05-31]

afnog@pc38:~$%

3. List public keys on my keyring

To list the public keys (yours and any others you have imported),
use
the ——1list-keys command:

afnog@pc38:~$ gpg ——list-keys
/home/afnog/.gnupg/pubring.gpg

pub 2048R/DC2B8CIOF 2015-05-29 [expires: 2015-05-31]
uid Joe Abley (temporary for AfNOG 2015 workshop)
<jabley@nsrc.org>

sub 2048R/5DDF749B 2015-05-29 [expires: 2015-05-31]

aftnog@pc38:~%

4. Export a particular key to give to someone else

To export a particular public key as text (e.g. so you can cut and
paste it into an e-mail), use —-export with -a. The -a flag makes
the

output text.

You can usually refer to a particular public key using the e-mail
address associated with it, or its hexadecimal key id (shown with
——list-keys).

afnog@pc38:~$ gpg —a ——export jabley@nsrc.org
————— BEGIN PGP PUBLIC KEY BLOCK————-
Version: GnuPG vl

mQENBFVoEngBCACggggNHvNoEXg6qRbsUYDrGI5vyKviVMQBN4PQC6Hoz4Yt3ETZ
JJI9w0@qVyRkbg+65FzDgsAt5IVH7v+I+P8EKt64ZT81iY0ce2BDxV1x2kuGLZVACrt
LK77gK/+vxvbxK016890tzJosFNAUfMGNHQIJPPT7S9yvA5LONuI4I+706tDFgiy
MV+iToNHpGj kSwPXonVZ+0DBPhjOUk64gfQq0dJae8mTsgX6Lzb8LKgBPhc204RZ
F1d7UFYcC2VeIwqfisil XWtUKwHnfzQjpbnymo8zK47LHZ9/XpKIQ2nGnMFbGnsr
GBadAd18d+55um62935e+8/dGel/D8c8pf2RABEBAAGOPOpVZSBBYmx leSAodGVt
cG9yYXJI5IGZvciBBZk5PRyAyMDE1IHdvcmtzaGOwKSA8amFibGV5QG5zcmMub3Jn
PokBPgQTAQIAKAUCVWgSeAIbAwUJAAK]jAAYLCQgHAWIGFQQCCQoLBBYCAWECHQEC
FAAACgkQufpbRtwrjJ+S6gf/bSx9w/V1f8Aael8VjPE30wlWgHqCRtPdI79Xk1ltn
hiPDsp44J10ej 1HQHOgucKF/AVNHmHHaOw@JudtjuA1lDAZFZgHO+1Nja2kUjt3Je
yzX5CcE+Xpq2UZ6EcvvZRnZM4LS4LZ1PhFp45aerXWPxV8/VWcbboX++YwJZILCuy
yqY5ufB9I84SAYgBF+028qgnYsLSp989CUygHb8ATuwSwWONnpLQK4s2uHxLwlclzwG
8Y1sfPsjXycj50GkVTdZ+Vu6GErNcd7/t8gnNR2CY310smy fnUYPUZGLTSgWA/n+
Zx7ptOuXSvROiDreK1k1gSVrb4ZRk0dbjLATy8D1/M28GbkBDQRVaBJ4AQgA4WMB
rPg07aaIK8sMNCaP6Qnm4vYXELqc1lZmhPgiFcyNj f3yAICt12SbV91ZAS5AWLZp7D
ExiYE/DFhgBNGroo5CjFGc4tpH5mYi22LIe ldKP8mPKk9+KplwmCLX1GjTBbG0qZ8
KE8VV3kmm1lRUrX0Y+P4ntii@zfBo3Y79AwLfrkh4E2cVtFUKQZ7XC1nS2jspYSeu
KIhsM51HQTmRbr@csBztgtU611jYdpuXNuY063e1B7QiUKy7IIhoPjY13LFcIrxx
cYo4QnfsxKvf8nH3C0zLb9+SSmOriwoPE@eD4WxhkKK66tG3fID65/F72z9Zv8alj
OmMFoQb7XUJ1WteuTwARAQABiQE1BBgBAgAPBQJVaBJ4AhsMBQkAAQMAAAOJELNG
WObcK4yfNyITAIjX2cKbgWgUyMPfupYW/epYVo/w3EErSUIdSqefD16d352Ft5Dp
wh5P9ADEXKE4z0FQgCsBGlweYNjVxw7CpL5a6B53HmF/JG1j FWwWd/pbQPCfxXIPa
Bw393K5DUQYKUPAXZNLYXuVEF6Nnj TEa4 rmER6F2 13XwKnTAD74+Yf01Pgd9mmoON9
CJt6GIBT8CeBVhMfoMxrwXvvIBKOREFMoKGFRb10eLL75JtoB7xhuZEFM1YDUYt2
tIgCUekACaV/gm3LEsPTWGUtK1LOc21orkWAm+V@e8mig91r3g2eP26zYxX7f7ZI
88FiMuZxakhSdFndoyH6cpLdK@/4dnx5W5w=

=kijt

afnog@pc38:~$%

5. Accept a public key from someone else

Find someone else in the room and ask them to give you their public

key. You can ask more than one person. They could e-mail you their
key, or put it on a USB thumb drive, or copy it over the network.
The way in which they transmit the public key to you does not need
to be secure. It could be printed in a newspaper and read by
thousands

of people.

In this case, I have a file called "joes—key.txt" that looks like
this:

afnog@pc38:~$ more joes-key.txt
————— BEGIN PGP PUBLIC KEY BLOCK————-
Comment: GPGTools - https://gpgtools.org

mQGiBEd74JoRBADBnwbFbanrMjMaq3fMMGWnZoEAoYFhB/UuBXxkFhmdTgVB45u4
rylJlkquYoh/+KGKZVQATqfH2KEZOMIXIY iapGAdWKNVMjhMzanJjkvIfwFBdtp/
g0QxjWume5ma+8FasSCAWLIBsgEewlFUdqF90qRxiCtWzWSiTHeoUPYRQwCgzhl/
zoYjNOXy5U7wtfQsRfz/6skEAIY/XUquYPUUmuNjz3WIMLzhUkuho8xe531fkowS
vHUNAEZUyBXa7I0JSnqP/n01ldu46/EMEpVjchveM]Y1BaynfBc31aGU9YyiSEJY+
84Y1lrLZee343yY/KlhWY6yDtDgZDd4HOWVY idNnELw1TQOKB+VFONVGUjvaTyel3
JTXCA/45I+58pgN2mQxHmX1Jz7R9tQIytfA21gcUnx9IZpSA/gagm+c RhabWxqg8

. and so on
I can import that key into my local keyring like this:

afnog@pc38:~$ gpg ——import joes-key.txt
gpg: key 86523A2C: public key "Joe Abley <jabley@hopcount.ca>"

imported
gpg: Total number processed: 1
gpg: imported: 1

gpg: 3 marginal(s) needed, 1 complete(s) needed, PGP trust model

gpg: depth: @ valid: 1 signed: ® trust: 0-, 0q, On, Om, Of,
1u

gpg: next trustdb check due at 2015-05-31

afnog@pc38:~$%

6. Check that the public key I just imported is authentic

If I generate a fingerprint of the key I just imported, and I ask
the person whose key it is to tell me what they think the
fingerprint

of the same key is, they should match. If they don't match, the
keys must be different (and I should not trust the copy I have).

Each person can calculate the fingerprint using the —-fingerprint
command:

[scallop:~]% gpg ——fingerprint jabley@hopcount.ca
pub 1024D/86523A2C 2008-01-02 [expires: 2017-03-20]
Key fingerprint = 80B7 8D10 922C ED@1 CBE9 85D8 348F 0CBD
8652 3A2C
uid [unknown] Joe Abley <jabley@hopcount.ca>

sub 40969/3D9B1B97 2008-01-02 [expires: 2017-03-20]
[scallop:~]%

The "Key Fingerprint" above is short enough that you could read it
over a phone (but be sure you know who you are talking to) or,
better, compared face-to-face in a meeting like AfNOG.

When you have compared fingerprints and found them to be the same,
you know that you have a trusted copy of the other person's public
key. You can record this trust by signing your copy of the public
key you just checked. This will provide a convenient record that
you have taken the time to check that the public key is genuine.

afnog@pc38:~$ gpg ——sign-key jabley@hopcount.ca

pub 1024D/86523A2C created: 2008-01-02 expires: 2017-03-20
usage: SC
trust: unknown validity: unknown
sub 4096g9/3D9B1B97 created: 2008-01-02 expires: 2017-03-20
usage: E
[unknown] (1). Joe Abley <jabley@hopcount.ca>

pub 1024D/86523A2C created: 2008-01-02 expires: 2017-03-20
usage: SC
trust: unknown validity: unknown
Primary key fingerprint: 80B7 8D10 922C ED@1 CBE9 85D8 348F 0CBD
8652 3A2C

Joe Abley <jabley@hopcount.ca>

This key is due to expire on 2017-03-20.

Are you sure that you want to sign this key with your

key "Joe Abley (temporary for AfNOG 2015 workshop)
<jabley@nsrc.org>" (DC2B8C9F)

Really sign? (y/N) vy

You need a passphrase to unlock the secret key for

user: "Joe Abley (temporary for AfNOG 2015 workshop)
<jabley@nsrc.org>"

2048-bit RSA key, ID DC2B8C9F, created 2015-05-29

afnog@pc38:~$%

7. Create an encrypted message to someone else

Create a text file that contains something that you can recognise.
It could be a few sentences, or a poem, or some lyrics from a song.
Personalise it, so that nobody else could reasonably guess what it
is. Put this in a file called "plain.txt".

Sign and encrypt that file, and put the results in a new file called
"cypher.txt" like this. When you encrypt, you have to specify who
you

want to be able to decrypt the text. You need to have the public key
of each recipient available.

It's a good idea also to encrypt towards yourself. Why?

afnog@pc38:~$ gpg —a —-se —-r jabley@hopcount.ca -r jabley@nsrc.org
plain.txt

You need a passphrase to unlock the secret key for

user: "Joe Abley (temporary for AfNOG 2015 workshop)
<jabley@nsrc.org>"

2048-bit RSA key, ID DC2B8C9F, created 2015-05-29

afnog@pc38:~%

The result of this is a file called "plain.txt.asc", which contains
encrypted data:

afnog@pc38:~$ more plain.txt.asc
————— BEGIN PGP MESSAGE————-
Version: GnuPG vl

hQQOA30ShNMOmxuXEA/7Buy7tJjEOFM/B7BmT2jhiqyiSnH2k6ja67ZXcbGyMoyF
J7qWaoKkD9dSHBbHMXXW9snIo4+p9vsv8le@icgxCmXIxpyHurkKK3iXJIXmjo8kTI
/D1BSatgKJq41Yme5VfxIs+SW1jqsPSwLKzQcTIVVXx/T74Q9VFtOpRIIJIbQUsVBN
BZenpP7F0c90+2LJDpZYHcjwkho5UDJj jrZmo@BJ2L3c93ESbxvf2ttogw44KYLL
oKyp8i4TZe9Euftkelo8ZNjhGDXCEpjsi@d6kgQKgbLoKcC5C/tNhJXbaWMdFBeR
wk9gkfSpb2hawPVzddMrkGtRZ5PXFyj2R5FY8f4Lbn/DeySmXtDazDefvL+voCIly
a4AvL9dobhH8DQVWvisX4kjeCgH6 rPHx4b2XEwfs8R/DksnrEB40KZNprVaP88zy

. and so on

Delete the original plain-text file, so that all you have left is
the
encrypted copy.

afnog@pc38:~$ rm plain.txt
afnog@pc38:~$ 1s plainxk
plain.txt.asc
afnog@pc38:~$%

Now give the encrypted text (e.g. by e-mail, by USB stick) to the
people you think should be able to encrypt it, and see if they can
tell

you what your secret text was.

If you give the encrypted text to someone else, they should not be
able
to decrypt it. Your secret is safe from them.

You can also check that you can decrypt it yourself, using:

afnog@pc38:~$ gpg plain.txt.asc

You need a passphrase to unlock the secret key for

user: "Joe Abley (temporary for AfNOG 2015 workshop)
<jabley@nsrc.org>"

2048-bit RSA key, ID 5DDF749B, created 2015-05-29 (main key ID
DC2B8CIF)

gpg: encrypted with 4096-bit ELG-E key, ID 3D9B1B97, created
2008-01-02
"Joe Abley <jabley@hopcount.ca>"
gpg: encrypted with 2048-bit RSA key, ID 5DDF749B, created
2015-05-29
"Joe Abley (temporary for AfNOG 2015 workshop)
<jabley@nsrc.org>"
gpg: Signature made Fri May 29 07:50:51 2015 UTC using RSA key ID
DC2B8CIF
gpg: Good signature from "Joe Abley (temporary for AfNOG 2015
workshop) <jabley@nsrc.org>"
afnog@pc38:~$ 1s plain.txt
plain.txt
afnog@pc38:~$%

(being able to decrypt it yourself is useful, in case you forget
what it
was!)

